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Abstract—Thorup-Zwick (TZ) compact routing guarantees
sublinear state growth with the size of the network by routing
via landmarks and incurring some path stretch. It uses a
pseudo-random landmark selection designed for static graphs,
and unsuitable for Internet routing. We propose a landmark
selection algorithm for the Internet AS graph that uses k-shells
decomposition to choose landmarks. Using snapshots of the AS
graph from 1997–2010, we demonstrate that the ASes in the
kmax-shell are highly-stable over time, and form a sufficient
landmark set for TZ routing in the overwhelming majority of
cases (in the remainder, adding the next k-shell suffices). We
evaluate path stretch and forwarding table sizes, and show that
these landmark sets retain low average path stretch with tiny
forwarding tables, but are better suited to the dynamic nature of
the AS graph than the original TZ landmark selection algorithm.

I. INTRODUCTION

Sustainable inter-domain Internet routing requires a scalable
forwarding plane, but shortest path routing algorithms for
general graphs have forwarding table size O(n), where n is the
number of nodes. This affects memory requirements in routers,
and may lead to scaling problems as the network grows [1],
[2], enforcing continuous router upgrades for many network
operators. Compact routing algorithms, on the other hand,
offer provable worst-case sublinear forwarding state growth,
by allowing path stretch within a well-defined bound.

Thorup-Zwick (TZ) compact routing for weighted, undi-
rected, static graphs guarantees worst case multiplicative path
stretch 3, with forwarding table size O(

√
n log n) [3] (perfor-

mance on AS graph snapshots is considerably better than this
theoretical bound [4]). At each node, the algorithm derives a
forwarding table containing a globally visible set of landmark
nodes A, and a subset of the rest of the graph. Forwarding
uses landmarks only if the destination is locally unknown.

TZ landmark selection is centralised and designed for static
graphs. It iteratively grows the landmark set from an initial
random set of nodes. However, in a dynamic graph, a stable
set of landmarks is required in the presence of change; this
must be computable in a distributed manner. To demonstrate
a feasible set of stable landmarks for the Internet, we use
the k-shells graph decomposition of daily AS graph snapshots
derived from BGP data collected between Nov 1997 and Nov
2010 [5]. The k-shells algorithm on AS graphs reveals a well-
connected nucleus corresponding to the kmax shell (see [6] and
§III). We show the nucleus is remarkably stable over time.

We define a new landmark selection algorithm using k-
shells decomposition to form landmark sets suitable for TZ
compact routing. We show that, in the overwhelming majority
of cases, the nucleus alone satisfies TZ’s requirements for sub-
linear forwarding table growth. In the remaining 1.8% of cases,
one additional k-shell is needed (§V-A). Advertisement of
changes to this set would incur low overhead in a decentralised
TZ routing protocol. We present path stretch and forwarding
table size results for TZk landmark sets on the AS graph, and
show that they are comparable to standard TZ landmark sets.

Our contributions are as follows. We present an in-depth
study of the stability of the AS graph nucleus as determined
by the k-shells graph decomposition. Next, we describe TZk,
a modification to TZ compact routing that uses the k-shells
decomposition to provide a stable and long-lived landmark
set. No compact routing algorithm has previously used k-
shells decomposition to intelligently place landmarks. Finally,
we demonstrate that TZk performs well on real-world graphs,
matching TZ performance.

II. RELATED WORK

Inter-domain routing scalability with shortest path routing
is an ongoing concern in the IPv4 Internet [1], [2] as for-
warding tables grow. Longer-term, an issue for router design
is forwarding table lookup times, and the associated costs for
adding or removing prefixes from tables [7]. IPv6 has the same
scaling issues as IPv4, with potentially more prefixes.

To achieve sublinear state growth at all nodes in a general
network, we must accept worst-case path stretch of 3 [8].

The AS graph node degree distribution follows a power law
[9]. The compact routing algorithms of Brady and Cowen [10]
and Chen et al. [11] use this to improve performance. Chen et
al. use node degrees to select landmarks, reducing forwarding
state compared to the theoretical bound in general graphs.
The Brady-Cowen (BC) algorithm constructs a spanning tree
rooted at the highest-degree node, then additional smaller trees
on connected regions at the edge of the network, some number
of hops away from the root of the primary tree; nodes use
distance labelling to determine the spanning tree with fewest
hops to the destination. The TZ and BC algorithms perform
well on synthetic power-law random graphs [12]–[14] and AS
graph snapshots [4], with mean stretch ∼1.1. Path stretch with
TZ routing (§IV-A) is more consistent than BC routing [4].
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Fig. 1. k-shells nucleus growth and TZ landmark set growth for snapshots
of the AS graph, showing the 5th percentile, median, and 95th percentile.

III. STABILITY OF k-SHELLS DECOMPOSITION

From [15], a subgraph G′ = (V ′, E|V ′) induced by the set
V ′ ⊆ V is a k-shell iff ∀v ∈ V ′ : degG′(v) ≥ k and G′ is
the maximum subgraph with this property. A node v has shell
index k if it belongs to the k-shell, but not the (k + 1)-shell.
A k-shell, then, is all nodes whose shell index is k [16]. All
k-shells of a graph can be obtained by recursively removing
all nodes of degree < k until all nodes in the remaining graph
have degree ≥ k, incrementing k when no additional nodes
qualify for that k-shell. The k-shells decomposition exposes
structure in a graph that is not obvious from node degree alone.

The largest k that generates a non-empty k-shell is kmax.
The kmax-shell is the nucleus: a highly-connected component
in the core of the network. Using the nucleus for landmarks
ensures that they are structurally important in the network.

We use AS graphs to show desirable properties of a k-shell
based landmark set for TZ routing on the Internet. To build AS
graphs dating Nov 1997–Nov 2010, we collect the unique set
of BGP paths from all Route Views collectors available each
day, determine the set of links between ASes, and generate
k-shells decompositions of these daily snapshots.

The graph has grown from 3030 ASes in Nov 1997 to 36255
ASes in Nov 2010. We study the nucleus for the same period.
Frequent nucleus size changes would suggest the network is
not stable enough to support TZ-based routing, while a slowly
varying nucleus suggests stability to be exploited. Fig. 1 shows
growth of the nucleus, aggregating the range of sizes each
month and plotting median, 5th, and 95th percentiles. While
growth is not linear, as might be expected from growth of the
network [17], we show in §V-A that these are valid landmark
sets in the vast majority of cases. We posit that the flattening
growth curve is a sampling artefact: many Route Views collec-
tors were added from 1997–2005, with few since. AS graphs
derived from BGP data are highly accurate near collectors,
but links toward edge networks may not be visible [18]. This
effect will grow unless the number of collectors scales with
the growth of the network, leading to the curve in Fig. 1.

The variation in landmark set size with the standard TZ
algorithm is also shown in Fig. 1. These sets are larger than
the nucleus, but §V-A shows that the nucleus is sufficient as a
landmark set in the majority of cases. By extension, any larger
nucleus revealed in a fuller graph will therefore also suffice.
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Fig. 2. Remainder rate. Bars show minima/maxima; points are medians; the
line tracks the mean.

In an evolving network, the landmark set will change over
time, but a generally stable landmark set is desirable to reduce
the overhead of recomputing and readvertising forwarding
tables. We measure departures from the landmark set by
calculating the fraction of the set At1 from time t1 that is
still present in the landmark set At2 at time t2. Fig. 2 plots
this at fixed intervals up to 3 years from the initial date. We
choose 3 years as a long-term measure in terms of Internet
evolution. The departure rate is clearly linear, with 70% (mean
and median) of a nucleus remaining after the 3 years. Given
the rate of growth of the network, one might reasonably expect
greater instability; to observe such stability is a key result. We
find that the lower bound of the range in Fig. 2 is introduced
primarily by the networks earlier in our dataset with smaller
nucleus sets, and the upper bounds of the range is introduced
by more recent networks.

These results show a long-term stability at the centre of the
network. Fig. 3 shows when each of the 245 ASes that have
appeared in the nucleus over our dataset were present. This
demonstrates at a high-level the stability of the set, with a
tendency toward older ASes (those with lower AS numbers).

Fig. 4 shows the fraction of the network directly connected
to the nucleus for transit services, derived from inferred AS
relationships data [19]. Due to network growth, we see a small
reduction in the fraction of the network directly connected to
the nucleus, though this may be due to the reduced accuracy
noted earlier. Almost 50% of the network is directly connected
to this relatively small set of nodes. The mean AS hop count
from the nucleus to all other nodes is in the range 2.5 – 2.7;
the 99th percentile is 4 or 5 hops. These places the nucleus
at the heart of the network: the mean distance between any
two pairs of nodes in the AS graph has has consistently been
between 3.5 – 4.0 during these dates; the maximal diameter
has risen from 9 hops to 11. On this basis, the nucleus appears
to be located as the network’s natural core.

It is important that the landmark set be geographically
distributed, so latency from additional hops is small. The Nov
2010 nucleus contains 100 ASes. We infer geographic place-
ment of these using WHOIS data: 45 are in North America;
42 in Europe; 12 in Asia-Pacific; 1 in Africa. They span 27
different countries. LACNIC region is not represented, though
this would change as demand improves network deployment.
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Fig. 3. Dates ASes appear in the nucleus. Black dots show when an AS was first seen; horizontal bars show dates it appears in the nucleus. More than
45,000 unique ASes have been seen; 245 appear in the nucleus. Of these, 212 were still in the BGP data, even if not in the nucleus, on 8 Nov 2010.

0%

20%

40%

60%

80%

100%

05
/0

4

11
/0

4

05
/0

5

11
/0

5

05
/0

6

11
/0

6

05
/0

7

11
/0

7

05
/0

8

11
/0

8

05
/0

9

11
/0

9

05
/1

0

Pr
op

or
tio

n 
of

 n
et

w
or

k 
re

ac
ha

bl
e

1 hop 
2 hops
3 hops

Fig. 4. Percentage of customers/peers n-hops from nuclei.

IV. TZ COMPACT ROUTING WITH k-SHELLS LANDMARKS

Using k-shells decomposition as the basis for the landmark
set exposes a highly connected, highly visible region of the
network. This region is structurally important: 30% of nodes
are reachable only via the nucleus, and distances between the
remainder are shortened considerably by routing through the
nucleus [6]. Choosing the nucleus as a landmark set has no
stretch for many paths, and low stretch for the others (§V-B).

A. TZ Compact Routing and Landmark Selection

Consider a graph G = (V,E), where V is the set of all
nodes and E is the set of all edges. TZ compact routing defines
a set of landmark nodes A ⊆ V towards which every node
v ∈ V retains paths. Each node v is surrounded by a cluster Cv

containing every node w that is fewer hops from v than from
the nearest node in A. Forwarding table entries are maintained
for nodes in Cv . Given V , a function d(v, w) that computes
the minimum distance between nodes v and w, and function
D(v,A) = min

∀w∈A
{d(v, w)}, at each node v the cluster set Cv

is:
Cv = {w ∈ V

∣∣d(v, w) < D(w,A)} (1)

The TZ landmark selection algorithm produces an expected
landmark set size of O(s log n), where s =

√
n/ log n and

n = |V | [3]. It is an iterative algorithm, which for each
iteration i grows the landmark set A to be the union of itself
and a subset of nodes chosen independently from a set Wi with
probability s/|Wi|. On the first iteration, W0 = V , and so A
is therefore populated with a random selection from the full

graph. In each subsequent iteration i, large clusters are broken
up by repopulating Wi according to the following equation:

Wi ← {v ∈ V
∣∣|Cv| > 4n/s} (2)

The algorithm terminates on the first iteration that Wi = ∅.
The cluster size constraint in Eq. 2 exists to maintain bounded
forwarding table sizes.

The TZ landmark set selection algorithm requires structured
labels, rather than simple addresses, to route packets. A
destination’s label comprises its name, the name of one of
its nearest landmarks, and the next hop from the landmark
to allow it to forward packets into the correct cluster. Paths
do not necessarily include the landmark: a path that uses the
landmark is the longest possible TZ path between two nodes.
It is possible, and expected, that packets bound for destination
d with landmark l will arrive at an intermediate node which
has, through the clustering process, retained a reference to d,
and thus skip l altogether and short-cut toward d.

In Fig. 1 we compare representative landmark set sizes for
the TZ compact routing algorithm with the size of the nucleus
for each snapshot. We generated fifty TZ landmark sets for
the same dates as evaluated in §V, and plot the range of
landmark set sizes (using the median value with 5th and 95th

percentiles). Landmark sets generated by the TZ landmark
selection algorithm are seen to vary considerably in size, due
to pseudo-random landmark selection, offering little stability.

Algorithms that rely on node degree as a measure of
importance [11] are unlikely to be appropriate for the Internet.
High degree may indicate a node with many customers and
few providers, or one with many providers and a high level
of peering with other transit nodes. It is more important that
landmarks are well-connected to the wider network and long-
lived (hence less likely to fail). The k-shell decomposition of
a graph gives a landmark set with such properties (§III).

B. TZ Routing with k-shells: TZk

We combine TZ compact routing with k-shells graph de-
composition to produce a modification to the TZ routing
algorithm which replaces the landmark selection algorithm
described in §IV-A. We refer to the result as TZk. As our
algorithm uses the structure of the network and eliminates the
random element of TZ, our landmark sets are deterministic.



Algorithm 1 : landmark(G, s)
Generate k-shells k = 1, 2, ...,max− 1,max
A← ∅ ; W = ∅ ; i← max
do
A← A ∪ i-shell
i← i− 1
Cv = {w ∈ V

∣∣d(v, w) < D(w,A), for every v ∈ V }
W = {v ∈ V

∣∣|Cv| > 4n/s}
while W 6= ∅
return A

Our new landmark selection algorithm is shown in Alg. 1.
Given a static graph, and setting the parameter s as defined
in §IV-A, we first determine the k-shells for the graph. Then,
starting from the nucleus, the kmax-shell, we test the clustering
constraints (Eq. 2). If the test fails, we expand the landmark set
to include the (kmax−1)-shell, and so forth. Building landmark
sets in this manner no longer guarantees that we meet the TZ
compact routing constraints, but they are met on all Internet
snapshots studied, and more generally should be met on other
power-law graphs. This algorithm selects topologically well
placed ASes as landmarks. §V shows that it provides at least
the same performance as TZ, but with the benefit that it will
select as landmarks a highly-stable, geographically distributed
set of ASes that are likely already performing transit functions.

V. PERFORMANCE OF TZk ON THE AS GRAPH

A. Constraint Checking

Alg. 1 determines the nucleus to be a sufficient and valid
landmark set in 98.2% of the 4662 snapshots (i.e., on the
first iteration, the algorithm does not produce any clusters
violating Eq. 2). Only 85 (1.8%) snapshots require a second
iteration; generally only one node had a cluster breaking the
size constraint. A third iteration was never required.

Despite massive growth, the network remains extremely
well-suited to the landmark sets generated by TZk, and the
kmax-shell remains centrally located and well-connected for
use as a landmark set for TZ routing.

B. Path Stretch

Taking one snapshot every six months across the full dataset,
we use Alg. 1 to generate landmark sets. Using these, we con-
struct forwarding tables as defined by [3], with the addition of
neighbour nodes into all forwarding tables following [12]. To
analyse stretch, we simulate packet forwarding from each node
to 1% of the other nodes, chosen with uniform probability. We
also simulate forwarding along the reverse path.

Fig. 5(a) shows multiplicative stretches observed with TZ
and TZk respectively (for TZ, from fifty landmark sets gener-
ated for each snapshot we show a subset of five experiments
spanning the range of landmark set sizes). We observe that
75.1% of all TZk paths tested are stretch 1, while 90.0%
of all paths tested have stretch < 1.3; only 0.09% of paths
tested are stretch ≥ 2.0. The maximum observed value for the
range [2.0 : 3.0] on all of the graphs we tested is 0.27%, in
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(a) Multiplicative stretches for TZ (top) and TZk (bottom).
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(b) Additive stretches for TZ (top) and TZk (bottom).

Fig. 5. Path stretch for the TZ and TZk algorithms.

Nov 2009. Our TZk stretch results are comparable to our TZ
stretch results and previous work [4], [14]. Network growth
has introduced a gradual reduction in the number of paths
experiencing any stretch, but the results indicate that TZk

continues to perform extremely well on these networks, with
the majority of paths experiencing no stretch.

Additive stretch results, Fig. 5(b), tell how many extra hops
were used. 21.3% of all paths are stretched by only 1 hop.
Only 1.3% of paths experience more than one extra hop, with
the proportion diminishing rapidly as the number of extra hops
increases. Again, our TZk results are comparable with TZ.

As clusters can overlap and are not symmetric (given nodes
a and b, Ca containing b does not imply Cb contains a), it
is possible for path lengths to differ and path stretch to be
non-symmetric. We find that 64.7% of paths are symmetric;
86% of those are stretch 1 in both directions. Of the 35.3%
asymmetric paths, 99.8% were stretch 1 in one direction. Of all
paths observed, 82.5% showed stretch < 1.3 in both directions.
No paths were stretch 3 in both directions

Stretch performance with our landmark sets is consistently
good. Long stretch is rare; paths are predominantly shortest-
path. Although AS graphs derived from BGP data can be
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Fig. 6. TZk forwarding table sizes. Boxes show minima, 1st percentile,
median, 99th percentile, and maximum; minima are not visible.

incomplete [18], [20], we believe our stretch results are worst-
case since additional usable paths will improve performance.
An operational network might manually insert routes for
popular destinations to ensure low-stretch paths, although this
would increase forwarding table sizes.

C. Forwarding Table Sizes

We show the distribution of forwarding table sizes using
TZk landmarks on AS graphs in Fig. VI. Even though we
additionally insert all neighbours into forwarding tables, we
find that those tables are extremely small, generally a few tens
of entries. By adding all neighbours, the largest tables are two
orders of magnitude larger than plain TZ due to the degree
distribution of the nodes in the network, but this is small
compared to storing references for all ASes, as in BGP. On the
Nov. 2010 snapshot, only 5 nodes maintain forwarding entries
for >5% of the network, and none reference more than 9%
of the network. 99.8% of nodes retain forwarding entries for
<1% of the full network. Other snapshots show very similar
forwarding table size distributions. Forwarding tables for TZk

have the desirable property that they are consistently small.

VI. FUTURE WORK

Distributed Computation of k-Shells: For real-world use,
the TZk algorithm must permit distributed computation of the
landmark set. A distributed algorithm for computing a k-shell,
given a parameter k, is outlined in [21]. However, our goal is
to find the kmax-shell, so we must modify the algorithm. Once
recomputed, changes to the landmark set must be announced,
resulting in only partial recomputation of routing state at some
other ASes. For a future Internet protocol, a decentralised k-
shells algorithm requires ASes to share information about the
ASes they have agreements with. Much of this is exposed via
BGP in the current network.

State Requirements: Each AS that is not a landmark has
at least one other AS that acts as its landmark. If an AS, d,
is equidistant from many landmarks, then any of them is on a
valid path to d. A mapping system that reveals the set of valid
landmarks for d allows a source s to select the nearest. This
minimises the distance s → Ld, and as all Ld → d are the
same length, a greater proportion of shortest-paths are used.

For local forwarding state, a node v retains all nodes closer
to v than to their own landmarks (Eq. 1). Thus cluster compu-

tation isn’t as simple as defining a low TTL for routing updates
from v. Routing updates must contain the distance between the
origin and its nearest landmarks, to provide other ASes with
the information required to perform the clustering calculation.
The additional information allows scoped propagation.

Policy: Routing policy, managed in BGP via path inflation
and modification of local preferences, is not considered by any
compact routing algorithm. No architecture that routes on AS
number alone can offer fine-grained control over prefixes.

VII. CONCLUSIONS

We present an analysis of the k-shells decomposition of
the AS graph using data spanning 14 years, and show that it
has remained stable despite the network’s growth. The nucleus
of this set offers a highly-visible, well-connected, stable, and
long-lived set of nodes that is topologically well-placed. We
defined TZk, a variant of the TZ compact routing algorithm
that adopts this nucleus as the basis of its landmark set. It
offers the same consistently excellent routing performance on
AS graphs as the TZ routing algorithm, achieving shortest-path
routes in the majority of cases, and generating extremely small
forwarding tables. The mean path stretch is small (∼1.1) and
usually adds only one additional AS hop. Adoption of a stable
landmark set in TZk is a necessary step towards deployment
of a decentralised routing protocol based on the TZ algorithm,
and the application of compact routing to the Internet.
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