
Self-Managed Cell: A Middleware for Managing
Body-Sensor Networks

Sye Loong Keoh1, Naranker Dulay1, Emil Lupu1, Kevin Twidle1, Alberto E. Schaeffer-Filho1, Morris Sloman1,
Steven Heeps2, Stephen Strowes2 and Joe Sventek2

1Department of Computing, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
{slk, n.dulay, e.lupu, k.twidle, aschaeff, m.sloman }@imperial.ac.uk

2Department of Computing Science, University of Glasgow, 17, Lilybank Gardens, Glasgow G12 8RZ, UK
{heeps, sds, joe}@dcs.gla.ac.uk

Abstract— Body sensor networks consisting of low-power on-
body wireless sensors attached to mobile users will be used in the
future to monitor the health and well being of patients in
hospitals or at home. Such systems need to adapt autonomously
to changes in context, user activity, device failure, and the
availability or loss of services. To this end, we propose a policy-
based architecture that uses the concept of a Self-Managed Cell
(SMC) to integrate services, managed resources and a policy
interpreter by means of an event bus. Policies permit the
declarative specification of adaptation strategy for self-
configuration and self-management. We present the design and
implementation of the SMC and describe its potential use in a
scenario for management of heart monitoring. Preliminary
performance measurements are also presented and discussed.

Keywords - autonomic management; adaptive sensing; policy-
based adaptation; reconfigurable networks.

I. INTRODUCTION
There is an emerging trend in the healthcare industry to apply
the advances in ubiquitous computing and sensor technology to
provide continuous monitoring of a patient’s medical condition
anytime and anywhere. Numerous sensors and actuators have
been developed for monitoring physiological parameters
including pulse, heart-rate, oxygen saturation, as well as
behavioural parameters such as posture and gait [1]. These
sensors and actuators, which are usually wearable and often
implantable can form a body sensor network using wireless
communications. They can also interact with wearable
processing units such as PDAs, mobile phones, and the fixed
network infrastructure in the environment, thus providing a
platform for continuous monitoring of the patient’s vital signs.
The body sensor network is particularly useful for monitoring
patients in post-operative care or with episodic manifestations
(such as cardiac arrhythmia). The benefits to the patients
include early release from hospital, and early detection of
abnormal conditions. Automated alerts to healthcare personnel
can also be used to obtain help in the event of significant
deviations from the norm or medical emergencies [2].

Wearable sensors without unwieldy wires between sensors
and processing units allow patients to escape from being
confined to a room, and enable them to be monitored while
performing normal daily activities. Many current portable body

sensors only collect information for offline analysis and are not
integrated into a system to respond or adapt to patient activity.
It is essential to provide real-time analysis of measurements to
support adaptation according to the changes in context and
clinical condition over time. Physiological parameters for
clinical observation and monitoring, such as heart rate
thresholds, and sensor configuration may need to be
dynamically modified depending on the user’s context, e.g.,
location, current activity and medical history. Devices should
also adapt the frequency of measurements depending on the
activity and clinical condition of the patient, thus optimising
power consumption whilst ensuring that important episodes are
not missed. Therefore, developing the architecture, tools and
techniques which permit these environments to become self-
managing is essential.

In this paper, we present a policy-based architecture that
supports autonomic management and self-configuration for
such systems, using the concept of a Self-Managed Cell (SMC)
[3, 4]. An SMC is an architectural pattern that consists of an
autonomous set of hardware and software components that
represent an administrative domain. SMCs are able to function
autonomously and adapt automatically to the user’s current
activity, communication capability and interact with other
SMCs. A policy-based approach defines how the system should
adapt in response to events such as failures, changes of context
or changes in the requirements. This enables the SMC to
implement a local feedback control loop over the system where
changes of state in the managed objects and resources trigger
adaptation that in turn affects the state of the system.

The paper is organised as follows: Section II describes the
SMC architectural pattern and its main components. Section III
describes the wireless medical and context sensors for health
monitoring. We give an account of implementation details in
Section IV while Section V discusses the initial measurements
and performance evaluation of the prototype. Section VI and
VII present the related work and conclude the paper with
directions for future work.

II. THE SELF-MANAGED CELL (SMC)
Figure 1 illustrates the SMC architectural pattern where an
SMC [3, 4] manages a set of heterogeneous components (i.e.,
managed resources) such as those in a body-sensor network, a

room or even a large-scale distributed application. Resource
adapters are instantiated to provide a unified view for
interaction with managed resources as they may use different
interfaces for communication and invocation of management
actions.

Figure 1. The SMC architecture pattern

The event bus, the policy service, and the discovery service
detailed below constitute the SMC’s core functionality and
must be present in every SMC instantiation. However, SMCs
may also comprise additional services for detecting context
changes, monitoring of component behaviour and providing
security (e.g., authentication and intrusion detection).

A. The Discovery Service
The discovery service is responsible for detecting new sensors,
devices or other SMCs in the vicinity. It is responsible for
maintaining the membership of the SMC to cater for transient
failures, and permanent departure (i.e., switched off, out of
range and failures). The discovery service also carries out any
admission control for accepting the device into the SMC based
on the device’s profile and authentication information
available. By making the discovery service policy-driven, it can
easily be adapted to different applications.

The discovery service broadcasts its identity message (id;
type[; extra]) at frequency ωR. This enables the SMC to
advertise itself to both devices and other SMCs and enables
current SMC members to determine that they are still within
reach of the SMC. New devices respond to the identity
message with a unicast message identifying themselves. The
discovery service can then query the device to obtain a device
profile and authentication credentials, and decides whether to
accept the device for membership and to which role it should
be assigned. An accepted device is informed and a component-
detected event is generated which results in the device being
registered and assigned to a role in the SMC. A device specific
communication adapter is then also created for that device.
Each existing member device unicasts its identity message to
the discovery service at the frequency ωD. If the discovery
service misses nD successive messages from a particular device,
it concludes that the device has left the SMC permanently, and
generates a corresponding component-left event. This event
will trigger the removal of any adapters corresponding to that
device in the policy service.

B. The Event Bus
Ubiquitous systems are essentially event driven, as changes of
state in resources need to be notified asynchronously to several,

potentially unknown services. The event bus distributes events
to software and hardware components within the SMC. It
offers at-most-once, persistent delivery of events and
implements content-based filtering [5]. SMC events comprise
(attribute, value) pairs and our implementation supports the
specification of filters (i.e., constraints on the attributes and
their values) e.g., heart-rate > 110. Subscribers register to
receive notifications based on filters and events matching a
registered filter are forwarded to the appropriate subscribers.

Figure 2. The event bus architecture

The event bus must guarantee reliable event delivery since
events trigger adaptation and re-configuration actions. The
publisher ensures that events it publishes arrive at the event
bus, while each subscriber is guaranteed to receive events in
the same order as received by the event bus. This is required as
events from the same publisher may be causally related. Thus,
all messages are acknowledged when received by the event bus
and the subscribers.

The architecture of the event bus is shown in Figure 2. On
receiving a component-detected event from the discovery
service, the event bus creates a proxy for that new component.
Event occurrences are notified by publishers to the event bus
via their proxies. Each subscriber proxy maintains a FIFO
queue of events and attempts to deliver the event at the head of
the queue until it is successful. When a component is detected
to have left the SMC, a component-left event will be raised by
the discovery service, which causes the event bus to remove
that subscriber’s filters, and purge any queued up events for
that subscriber.

C. The Policy Service
Policies are rules that govern choices in the behaviour of an
SMC. The use of interpreted policies means that SMC
behaviour can be easily changed without shutting down or re-
coding components. We are primarily concerned with two
types of policies: authorisation policies define what actions are
permitted under given circumstances and obligation policies
define what actions to carry out when specific events occur if
certain conditions are fulfilled (Event-Condition-Action rules).

The policy service [4, 6] maintains adapter objects for each
of the components on which management actions can be
performed. This includes the sensors and other devices present
in the SMC, services within those devices and remote SMCs.
These adapter objects (also called managed objects) are
grouped in a domain structure that implements a hierarchical
namespace. Domains may overlap and a managed object may
belong to several domains. Domains are typically used to group
objects to which common policies apply and can be used as
placeholders in policy specifications. Domains and policies are

managed objects in their own right on which actions can be
performed e.g., adding/removing an object from a domain,
enabling or disabling a policy. Discovery obligation policies
triggered by a component-detected event create the adapter
object to interact with the discovered object and determine in
which domain the object will be placed. Other policies
specified for that domain will then automatically apply to the
new component.

III. WIRELESS MEDICAL AND CONTEXT SENSORS
In this section, we detail various mote-based medical and
context sensors used in our prototype implementation.

A. Mote-based Electrocardiograph (EKG)
Electrocardiograph (EKG) is used to measure the electrical
activity of the heart in which it records a short sampling of the
heart’s electrical activity between different pairs of electrodes.
Each pair of leads provides unique and detailed information of
the cardiac rhythm. This enables the cardiologist to rapidly
identify a wide range of cardiac arrhythmias, acute myocardial
ischemia and infarction. Mote-based EKGs [7] are wearable
and they provide continuous EKG monitoring during daily
activities. Figure 3(a) shows an EKG sensor attached to the
BSN that is used in our prototype implementation. It is a three-
lead EKG sensor in which two leads attached to the upper chest
measures the cardiac activity, while the other serves to properly
bias the patient’s skin. The resulting trace is routed to an
analogue to digital converter (ADC) port on the BSN mote [8].

B. Accelerometer and Temperature Sensor
The accelerometer provides information on the activities of the
wearer, e.g., walking, sleeping, running or resting. Detection
of a total lack of movement, combined with abnormal sensor
readings, can be used to infer if the patient has fallen or the
sensors have been removed.

 (a) EKG (b) Accelerometer and temperature

Figure 3. Wireless medical and context sensors

Figure 3(b) shows a 2-axis accelerometer that can be
attached to the BSN mote. Similar to the work reported in [9],
the accelerometer is used for simple activity analysis in which
we are only interested in the level of activity without being able
to distinguish specific actions. Strenuous activities such as
walking and running can be detected based on a characteristic
periodic acceleration frequency signature indicating the speed
of movement [9].

The temperature sensor is placed on the same sensor board
as the accelerometer. However, it can only be used to sense
environmental, not body temperature. The sensor must be
calibrated before use.

IV. PROTOTYPE IMPLEMENTATION

A. Prototype Scenario
We have developed a prototype to monitor the heart-rate of an
elderly patient who suffers from heart disease, so that any
potential heart-attack can be detected. We model the scenario
as an SMC consisting of a Gumstix running the SMC core
services, together with an EKG sensor, accelerometer,
temperature sensor, a GPRS-enabled mobile phone and a GPS.

The SMC is instantiated by starting the policy service,
which in turns instantiates the event bus and the discovery
service as managed objects. Policies facilitating self-
management and self-configuration to support heart monitoring
are pre-deployed in the policy service. This includes discovery
policies to create managed objects to communicate with
sensors and place them in the appropriate domain. We assume
that factories, which permit the creation of new managed
objects for the various SMC sensors have already been
imported in the /factories/ domain. The discovery service
discovers various sensors over 802.15.4, Wi-fi and Bluetooth.

Policies are defined to alert the hospital if a heart problem
is detected. The following policy specifies that when the EKG
sensor raises an event that the patient’s heart rate has exceeded
90 bpm while resting, it triggers an action to send an
emergency SMS to the hospital to call for an ambulance. If the
patient is located outdoors, it is also possible to include the
patient’s current GPS location when indicating an emergency.
 on heart_attack_event(hr) do
 loc = /devices/gps.getLocation();
 /devices/mobilephone.call(2075948449, 2025487584, hr, loc);

EKG reconfiguration can be performed in order to adapt the
heart rate threshold whenever there is a change in the patient’s
current activity. The maximal heart-rate is calculated by
subtracting the patient’s age in years from the general maximal
heart rate of 220 bpm. During exercise, the heart-rate should
reach no more than 60 – 75% of the maximal heart-rate
calculated. The following policies are defined:
 on strenuous_event(age) do
 /devices/ekg.setThreshold(0.6*(220-age));

B. Implementation of the SMC Core Services
We have implemented the basic architecture of the SMC
consisting of a policy service, event bus and discovery service
using Java 1.4 and Java 2 Micro Edition (J2ME). We have
deployed the SMC core services on a Gumstix running Linux.

The policy service has been implemented with a particular
focus on flexibility and the ability to load all the code needed
on-demand. This enables us to use it across a wide variety of
applications and devices with different capabilities by only
loading components necessary for that particular application.
The policy service contains several factory objects such as
policy (authorisation and obligation), domain, managed object,
and event. This provides the flexibility to dynamically create
policies, managed objects or adapter objects for
communicating with various sensors and devices with their
respective communication protocol such as Bluetooth,
802.15.4, or Zigbee. Specific factories can be defined for each

of the different types of managed objects in use, e.g., an EKG
factory creates a BSN managed object that can communicate
via 802.15.4 with the EKG mote. The created instance of the
EKG mote is then placed in the domain structure.

C. Implementation and Configuration of Sensors
We have implemented a generic architecture for BSN motes
(running TinyOS and programmed using nesC [10]) that
enables the sensors to be discovered dynamically and to
publish events to the event bus in the SMC. Different sensors
are customised to sense different physiological parameters
based on the sensors attached to the BSN mote.

We have implemented an algorithm based on [11] to detect
QRS complex and measure RR interval from the EKG
waveform on the BSN mote. The algorithm first performs
differentiation over the sampled data in order to obtain
information about signal slope. A potential peak is
characterised by a point where the value of the slope is zero
[12]. The value of the derivative is then squared to intensify the
frequency response curve of the derivative. Finally, the
algorithm performs a running integration of the squared
derivative over a moving window. This value is then compared
with an adaptive threshold, if it is exceeded, an R wave onset is
assumed. The R peak value is then stored in order to calculate
RR intervals. Based on the mean RR intervals, heart-rate can be
derived and then be sent as an SMC event to the event service
if it exceeds the threshold. The EKG data is sampled at 200 Hz
and the QRS detection algorithm is executed every time a
sample is obtained. Our implementation has the advantage of
optimising the sensor’s battery power as it does not transmit all
EKG data to another device for processing and analysis.

The accelerometer and temperature sensor data are obtained
from the respective ADC ports for analysis. Whenever there is
a change in the activity, i.e., from resting to walking or running
and vice versa, an SMC event is published by the sensor.

V. EVALUATION AND MEASUREMENTS
This section presents an initial evaluation of the SMC’s
performance based on a Gumstix device running the core
services to manage a set of BSN medical sensors.

A. The Discovery Service
Although 802.15.4 radio specification claims a maximum
bandwidth of 250 Kbps, the actual bandwidth measured in our
experiments is substantially lower. We conducted an
experiment comprising a single BSN node as a receiver and
several BSN nodes acting as senders. Each sender was one hop
away from the receiver and each sent a packet of 76 bytes with
a data rate progressively increasing from 1 to 40 packets per
second. Figure 4 shows that the data throughput is linear with
the data rate for one sender. In the case of 3 and 5 senders, a
maximum throughput of approximately 50 Kbps is observed.

We also measured the end-to-end delay of the 802.15.4
radio between two BSNs that are one hop away from each
other. It takes approximately 20 ms to send a packet to another
BSN. The end-to-end delay of the serial link between the
Gumstix and the BSN gateway is approximately 25 ms. As

described earlier, the discovery handshake involves three
802.15.4 packets and two serial packets which amount to 110
ms, the actual delay measured was on average 129.40 ms.

Figure 4. Throughput of the Body Sensor Nodes (BSN) with varying data

rates

B. The Policy Service
We observed that the evaluation of policy constraints incurs the
most overheads as this involves parsing of the constraints and
string comparisons. The time taken to execute a policy without
a condition and with an empty action is only 13.57 ms, while it
takes 28 ms (variance is 0.49) to execute a policy with a simple
condition and an action to publish a new event. We also
observed that it takes 23.88 ms with a variance of 0.38 to
execute a policy (with no condition) and invoking an action to
issue a command to the BSN.

Each policy is instantiated as a Java object which requires
3.214 KB memory. This includes the policy type, the list of
events which may trigger the policy, the actions to be
performed and the constraints that need to be evaluated.

C. The Event Bus
We measured the performance of the event bus by measuring
the delay incurred from the moment an event is raised until the
notification is received by the subscribers as a function of
number of subscriptions. The event bus is very efficient in that
the average time to match an event against various number of
subscriptions (1 to 1000 subscriptions) is between 13 to 15 ms.
This performance is adequate for the case of an SMC that
manages a few body sensors, forming a body area network.

D. End-to-end Management
The whole discovery process takes an average of 144.25 ms.
This is measured from the time a device sends a request to join
the SMC, performs the discovery protocol handshake,
generates a new member event to instantiate the managed
object and event proxy. The process of creating the managed
object and the event proxy takes approximately 14.85 ms.

We also measured the time from invocation of an action
until it returns. This involves issuing a command to the BSN
via the 802.15.4 transport, e.g., to instruct the BSN to start
sensing. The result shows that it takes an average of 12.7 ms.
As for end-to-end management, when the sensor publishes an

event through the event proxy, which then triggers the policy to
execute a management action, it takes an average of 46.05 ms.
This was measured from the time the event arrived at the event
proxy at the event bus till the action in the policy was executed.

VI. RELATED WORK
Traditional approaches in policy based network and systems
management include PCIM [13], PDL [14], NGOSS Policy
[15], Ponder [16] and PMAC [17]. They all make use of event-
condition-action rules for adaptation but are aimed at the
management of distributed systems and network elements and
do not scale down to small devices and sensors.

Gaia [18] and Aura [19] introduce active space and smart
space respectively to provide a “meta-operating system” to
build pervasive applications. They focus on spaces of relatively
fixed size, and on specific concerns such as context-related
applications and user presence. We consider a SMC as an
architectural pattern that applies at different levels of scale and
we focus on generic adaptation mechanisms through policies.

PICO [20] is a middleware that enables effective
collaboration among heterogeneous hardware and software
entities that work together to achieve goals. The notion of
community is similar to our SMC, but our focus is to facilitate
self-configuration and self-management using policies.

CodeBlue [21] integrates low-power, wireless vital sign
sensors, PDAs and PC-class systems to provide a platform for
medical sensor networks. It investigates the data rates, patterns
of packet loss and route maintenance of the wireless sensor
network, while the SMC focuses on the management of body-
sensor networks using policies.

Mitidieri and Kaiser [22] introduced a filtering mechanism
for a publisher/subscriber communication system. However, it
seems that by requiring an event handler on each BSN sensor
to manage event subscriptions is not feasible in our framework.

VII. CONCLUSIONS AND FUTURE WORK
We have proposed the SMC structure as a basic architectural
pattern that aims to provide local feedback control and
autonomy. Our implementation demonstrates that the SMC
concept can be applied to e-Health applications in order to
achieve self-management and self-configuration in body sensor
networks. The realisation of more complex systems through the
composition and peer-to-peer interactions between SMCs is
required to cater for a larger scale of ubiquitous applications.

The use of an event bus as the primary means of
exchanging management information de-couples architectural
components and provides the basis for extending the
functionality of the SMC by adding additional services.
Policies, in the form of ECA rules, provide a simple and
effective encoding of the adaptation strategy required in
response to changes of context or changes in requirements. The
ability to dynamically load, enable and disable the policies
together with the ability to use policies in order to manage
policies caters for a wide variety of application needs.

Preliminary performance measurements suggest that the
delays incurred are suitable for many health-monitoring

applications for management of chronic conditions and in post-
operative care. This is despite the fact that the current
implementation focuses on flexibility rather than performance
and no optimisations have been made.

ACKNOWLEDMENT
The authors wish to thank the UK Engineering and Physical

Sciences Research Council (EPSRC) for their support of this
research through grants GR/S68040/01 and GR/S68033/01.

REFERENCES
[1] G.Z.Yang (Ed.), Body Sensor Networks, Springer-Verlag, March 2006.
[2] E.Jovanov, et al. A Wireless Body Area Network of Intelligent Motion

Sensors for Computer Assisted Physical Rehabilitation. Journal of
NeuroEngineering and Rehabilitation 2(6), March 2005.

[3] N. Dulay et al. Self-Managed Cells for Ubiquitous Systems, In the Proc.
of the 3rd Int. Conf. on Mathematical Methods, Models and
Architectures for Computer Networks Security, Sept 2005.

[4] S.L. Keoh, et. al. Policy-based Management for Body-Sensor Networks.
In Proc. of the 4th Int. Work. on Wearable and Implantable Body Sensor
Networks (BSN), 26 – 28 Mar 2006, Aachen, Germany.

[5] S. Strowes, et al. An Event Service Supporting Autonomic Management
of Ubiquitous Systems for e-Health, In Proc. of the 5th Int. Work. on
Distributed Event-based Systems, Lisbon, Portugal, July 2006.

[6] Ponder2, http://www.ponder2.net/
[7] B.Lo, et al. Body Sensor Network – A Wireless Sensor Platform for

Pervasive Healthcare Monitoring. In Adjunct Proc. of Int. Conf. on
Pervasive Computing, 2005.

[8] U.Anliker, et al.. AMON: A Wearable Multiparameter Medical
Monitoring and Alert System. In IEEE Trans. on Information
Technology in Biomedicine 8(4), Dec 2004.

[9] D.Gay, et al. The nesC Language: A Holistic Approach to Networked
Embedded Systems. In Proc. of Programming Language Design and
Implementation (PLDI), San Diego, June 2003.

[10] DTI UbiMon Project, UK www.ubimon.org
[11] J.Pan and W.J.Tompkins. A Real-time QRS Detection Algorithm. IEEE

Transactions in Biomedical Engineering, 32, 1985.
[12] E. Katsiri, et al. Embedded Real-Time Heart Variability Analysis. In

Proc. of the 4th Int. Work. on Wearable and Implantable Body Sensor
Networks (BSN), 26 – 28 Mar 2006, Aachen, Germany.

[13] B. Moore, et al. Policy Core Information Model Version 1 Specification,
Network Working Group, RFC2060, 2001

[14] J. Lobo, et al A Policy Description Language. In Proc. of the 16th
National Conference on Artificial Intelligence, Orlando, July 1999.

[15] J. Strassner, Policy-based Network Management, 2004.
[16] N. Damianou, et al. The Ponder Policy Specification Language. In Proc.

of the Int. Workshop on Policies for Distributed Systems and Networks
(POLICY), Bristol, UK, Jan 2001.

[17] D. Agrawal, et al. Policy Management for Networked Systems and
Applications, In Proc. of the 9th IFIP/IEEE Int. Symp. on Integrated
Network Management, Nice, France, May 2005.

[18] M. Roman, et. al. A Middleware Infrastructure for Active Spaces, IEEE
Pervasive Computing, 1(4):74-83, 2002.

[19] D. Garlan, et al. Aura: Toward Distraction-Free Pervasive Computing,
IEEE Pervasive Computing, 1(2), 2002, pp. 22 - 31.

[20] M. Kumar, et al. PICO: A Middleware Framework for Pervasive
Computing, IEEE Pervasive Computing, 2(3):72-79, 2003.

[21] D. Malan, et al. CodeBlue: An Ad Hoc Sensor Network Infrastructure
for Emergency Medical Care. In Proc. of the Int. Work. on Wearable
and Implantable Body Sensor Networks, April 2004.

[22] C. Mitidieri and J. Kaiser. Attribute-based filtering for Embedded
Systems. In Proceedings of the 2nd Int. Work. on Distributed Event-
based Systems (DEBS), June 2003

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d0061007400630068002000740068006500200022005200650071007500690072006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

